Electric-field-resolved wide-field near-field imaging

Mikhail Mamaikin1,2, Yik Long Li1,2, Enrico Ridente1,2, Matthew Weidman1,2, Ferenc Krausz1,2, and Nicholas Karpowicz1,3

1Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Str. 1, 85748 Garching, Germany
2Department für Physik, Ludwig-Maximilians-Universität, Am Coulombwall 1, 85748 Garching, Germany
3CNR NANOtec Institute of Nanotechnology, via Monteroni, 73100 Lecce, Italy

nicholas.karpowicz@mpq.mpg.de

We demonstrate spatially-resolved electro-optic sampling of near-infrared waveforms, providing a versatile platform for the direct measurement of electric field dynamics produced by and inside of photonic devices and structures. The imaging modality demonstrates a path towards hyperspectral microscopy with sub-wavelength resolution, wide-field images recorded in the far field. The field microscopy of small metallic particles yields a direct time-domain measurement of locally-enhanced electric fields.

Fig. 1: Image of the peak intensity as a function of space in a collection of micron-scale silver particles. A hot spot is visible near a sharp feature in one of the structures, corresponding to a sub-wavelength enhanced region, in (a). The electric field waveform is obtained for each pixel in the image simultaneously – the waveform on the hot spot is compared to the background electric field transmitted through a region without any structures in (b).